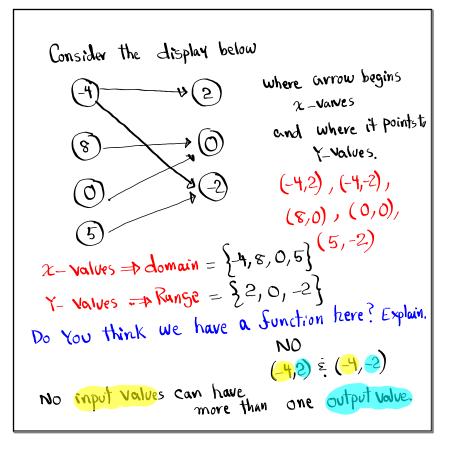


Portrait Style only.
1) Graph

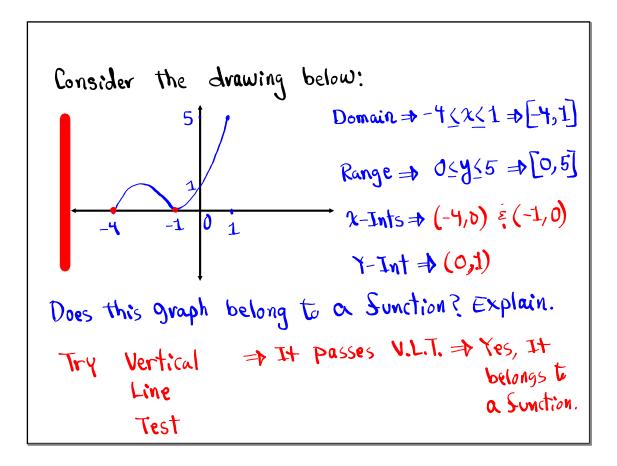
$$2x-5y=-10$$

by intercept Method.
 $\frac{x}{-5}$ $\frac{9}{-5}$ $\frac{-5}{-5}$ $\frac{x-2}{-2}$ Using
 $m=\frac{2}{-5}$ $m=\frac{5}{-2}$ $x-2$ Using
Sbpe-Int. method
 $m=-\frac{5}{-2}$ $x-2$ Using
 $x-2$ $x-2$ Using
 $m=-\frac{5}{-2}$ $x-2$ Using
 $x-2$ $x-2$ Using
 $x-2$ $x-2$ $x-2$ Using
 $m=-\frac{5}{-2}$ $x-2$ Using
 $x-2$ $x-2$ $x-2$ Using
 $m=-\frac{5}{-2}$ $x-2$ $x-2$ $x-2$ Using
 $m=-\frac{5}{-2}$ $x-2$ $x-2$

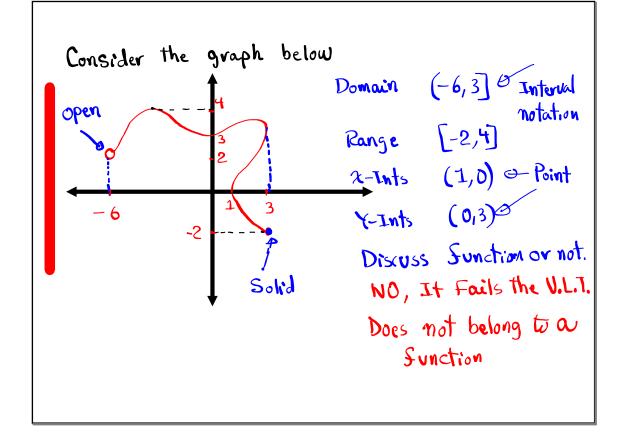
So
$$S(x) \stackrel{?}{\leftarrow} Y$$
 are interchangeable.
Leraph $S(x)=4 \Rightarrow Y=4$
Constant Horizontal
Sunction II $\frac{1}{9}(x)=-3 \Rightarrow Y=-3$


Graph
$$S(x) = \frac{4}{5}x - 4 \stackrel{\text{!e}}{=} 9(x) = \frac{4}{5}x + 4 \text{ in the}$$

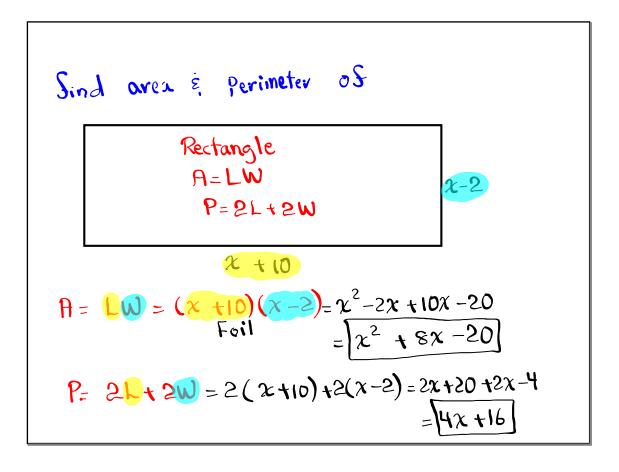
Same coordinate System.
 $S(x) = \frac{4}{5}x - 4$
 $m = \frac{4}{5}$, Y-Int (0,-4)
 $9(x) = \frac{4}{5}x + 4$
 $m = \frac{4}{5}$, Y-Int (0,4)
 $m = \frac{4}{5}$, Y-Int (0,4)
Same Slope
Different Y-Int
Parallel lines.

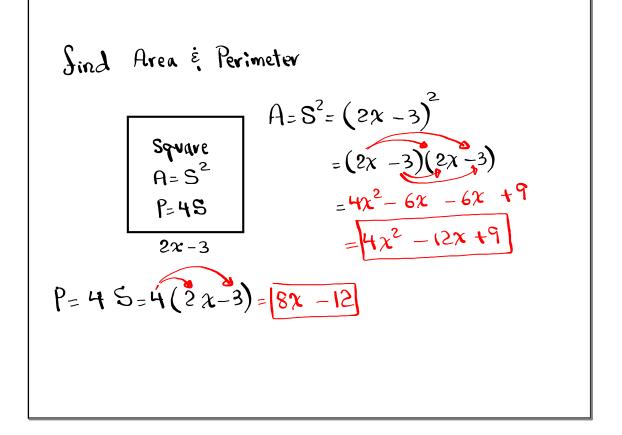

Consider
$$S(x) = x^{3} + 8$$

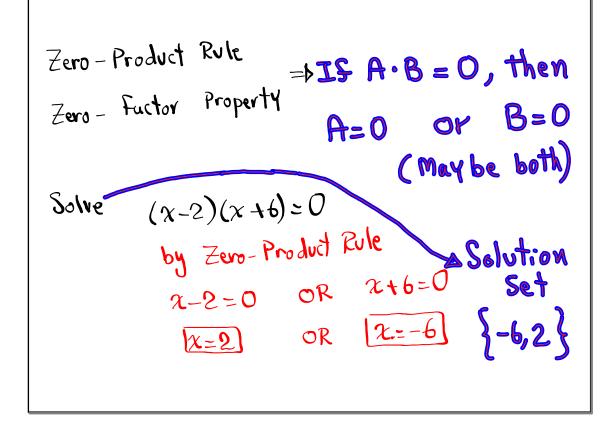
Find
1) $S(0)$ (0,8) $= 2^{3} + 8$ (2,16) $= (-2)^{3} + 8$
 $= 0 + 8 = 18$ $= 8 + 8$ $= -8 + 8$
(2,16) $= (-2)^{3} + 8$ $= -8 + 8$
 $= 16$ $= -8 + 8$
 $= 16$ $= -8 + 8$
 $= 16$ $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -8 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 8$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $= -9 + 10$
 $=$


Consider
$$f(x) = \chi^2 - 4\chi + 4$$

Find
1) $f(0) = 0^2 - 4(0) + 4$ 2) $f(2) = 2^2 - 4(2) + 4$
 $= 141 \quad (0,4)$ $= 4 - 8 + 4 \quad (2,0)$
3) $f(-3) = (-3)^2 - 4(-3) + 4$ 4) $f(\chi + 2)$
 $= 9 + 12 + 4$ $= (\chi + 2)^2 - 4(\chi + 2) + 44$
 $= 25 \quad (-3,25)$ $= (\chi + 2)^2 - 4(\chi + 2) + 44$
 $= \chi^2 + 2\chi + 2\chi + 4\chi - 4\chi - 8 + 44$
 $= \chi^2^2$ $(\chi + 2, \chi^2)$


$$\begin{aligned} f(x) &= |2x - 6| + 4 \\ f(x) = |2(0) - 6| + 4 \\ &= |0 - 6| + 4 \\ &= |0 - 6| + 4 \\ &= |-6| + 4 = 6 + 4 = 10 \\ \end{aligned}$$


$$\begin{aligned} f(x) &= |2 - 3 - 6| + 4 \\ &= |-6| + 4 \\ &= |-6| + 4 \\ &= |-6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |2(\frac{1}{2}x + 3) - 6| + 4 \\ &= |x + 6 - 6| + 4 \\ &= |x + 6 - 6| + 4 \\ &= |x + 4 - 6| + 4 \end{aligned}$$



Fuctor Completely
i)
$$3x + 12$$

 $=3x + 3 + 12$
 $(x + 3)(x + 4)$
i) $3x^{2} + 7x + 12$
 $(x + 3)(x + 4)$
i) $x^{2} + 7x + 12$
 $(x + 3)(x + 4)$
i) $x^{2} + 7x + 12$
 $(x + 3)(x + 4)$
i) $x^{2} + 7x + 12$
 $(x + 4)(x - 3)$
i) $x^{2} + 7x + 12$
 $(x + 4)(x - 3)$

Solve
$$(2x + 3)(2x - 3) = 0$$
 by Zero-factor
by Z.F.T.
 $2x + 3 = 0$ or $2x - 3 = 0$
 $2x = -3$
 $x = -\frac{3}{2}$
 $x = -\frac{3}{2}$

Solue
$$\chi^2 - 24 = 2\chi$$

 $\chi^2 - 24 - 2\chi = 0$
 $\chi^2 - 2\chi - 2\chi = 0$
1,24
2,12
3,8
4,6
By Z.P.R.
 $\chi + 4 = 0$ or $\chi - 6 = 0$
 $\chi = -4$
 $\chi = 6$
 $\chi = -4$
 $\chi = 6$
Hint: Make RHS
Zero.
Write in
descending
order
Factor the LHS
Completely
 $\chi = -4,6$

looking ahead

$$\begin{aligned}
f(x) &= \chi + 5 \quad f(x) = \chi - 5 \\
find
f(x) &+ f(x) &= \chi + 5 + \chi - 5 = 2\chi \\
F(x) &- f(x) = \chi + 5 - (\chi - 5) \\
&= \chi + 5 - \chi + 5 = 10 \\
f(x) & f(x) = (\chi + 5) \cdot (\chi - 5) = \\
Foil
Be aware os foil
SE 2 due dates. = \chi^2 - 5\chi + 5\chi - 25 \\
Work on SE 3 &= (\chi^2 - 25) \\
as well.
\end{aligned}$$

